
CIGAL Workshop

Jim Voyvodic

May 13, 2015

CIGAL

These CIGAL topics will not be covered in this session:

• Showplay’s modular design

- How to replace standard components with your own

• Structured event programming

- How to let real-time events select stimulus lists

• Creating customized stimulus or response events

- Programming your own real-time modules

• Adaptive paradigm programming

- Adjusting task difficulty based on subject performance

• Real-time fMRI

- Adapting stimuli based on brain BOLD response

Advanced topics

What is CIGAL?

• Compilable imaging, graphics, & analysis language

• Similar in concept to Matlab

• Originally written for video image processing
and 3-D reconstruction graphics

• A single C program (CIGAL.exe) plus many text files

• Design goals:

Flexible language, Easy to use, Fast, Accurate

• Hardware interface abstracted via data variables

• Real-time multi-tasking processor added for fMRI

CIGAL has been used in neuroscience since 1985

What makes CIGAL special for fMRI studies is its real-time processor.

CIGAL’s real-time processor can run any number of multiple simultaneous program

streams in parallel. Timing of events in each stream is automatically interleaved as

necessary to ensure that every individual event occurs when specified. Actual

execution timing is recorded to 20 us accuracy.

Real-Time Multi-processing

Most fMRI paradigms are run using Showplay

Showplay is a CIGAL macro program (‘showplay.imp’)

Showplay calls other macro modules to read input files,

prepare data tables, and save output files.

The task itself is a real-time program run within a single

“realtime” command. Showplay automatically constructs

the real-time program (rtime.tmp) at run time by linking

together many real-time code modules. Different modules

control independent real-time processing streams (e.g.

scanner trigger, a/d read, stimuli, responses)

Advanced users can customize modules for their own needs.

Showplay

Creating a Showplay Paradigm

Showplay was designed to provide a simple generic paradigm

generation tool. The user sets a few parameters and then provides

a list of stimulus events. Both the parameters and the stimulus list

are usually specified together in a single plain text paradigm

parameter file (PPF).

Stimulus events can indicate the exact time (onset and duration)

and location (screen position) for each stimulus.

Showplay stimulus events can be (among others):

image (.jpg, .pcx) rwait (wait for response)

sound (.wav) owait (wait for operator)

movie (.avi) reset (reset clock)

text (“”) bdraw (draw a box)

fix (fixation cross) edraw (draw an ellipse)

font (change text font) writeport (write to a device)

quit

showplay 0 ; initialize new showplay task

sbackcolor = "black" ; screen background color

stextcolor = 'white‘

t_r = 2000 ; scanner TR

disdaqs = 3 ; initial discarded TR’s

fslscheds = { ; for creating FSL analysis files (uses stim ID #s)

fixation 1

sounds 12 22

faces 13 23

movingdots 14 24

}

return ; ends parameter section

;Stimulus ID Flg Onset Duration LocationXY

"Press for faces" 99 0 0 4000 -1 -1 ; show text

fix 1 0 4000 0 -1 -1 ; central '+'

tones1.wav 12 0 6000 4000

face1.pcx 13 1 8000 1000 200 100

dots1.avi 14 0 12000 4000 -1 -1

fix 1 0 16000 2000 -1 -1

tones3.wav 22 0 -1 4000

face2.pcx 23 1 -1 2000 400 200

dots2.avi 24 0 -1 4000 -1 -1

. . .

quit 0 0 300000

Sample PPF Input File

Running CIGAL

Start CIGAL using a StartCIGAL shortcut file located in the disk

directory (folder) containing your task files. (Don’t use the

obsolete “start.cgl” method.)

If you don’t have a startup shortcut, copy one from the CIGAL

program directory containing the version you want to run.

At the BIAC scanners, you should use the shortcut:

LocalCIGAL

contained in the folder:

D:\Programs\CIGAL\CurrentVersion

(Running from the computer’s local D: drive ensures that you

use the appropriate default hardware settings and avoid

unnecessary network traffic.)

On other BIAC computers, you can copy:

P:\CIGAL\CurrentVersion\StartCIGAL

Running a Showplay Paradigm

Once you have a PPF file, you can run it by selecting menu:

Showplay -> Load parameter file

then:

Showplay -> Run

Alternatively, you could type the commands:

showplay mypdigm.ppf ; load file

showplay ; run

To end a paradigm (and save data), enter:

q or <Control>-E

To abort a paradigm (without saving data), enter:

<Control>-C

Menus and Dialogs

All interactive menus and dialogs in CIGAL are simple plain text

files (standard menus are stored in DLOGS in the CIGAL system

folder – they can be used as samples).

The following is an example of a simple fMRI session menu:

"Practice Language

showplay 1 './PARAMS/prac_6s.ppf'

showplay

"Eye Chart

eyechart

"(-

"Language -- List 1 (6s)

Showplay './PARAMS/sent1.ppf'

showplay

"AudioVisual Language 1 (6s)

showplay './PARAMS/audvis6s_sent1.txt'

showplay

To add a menu to your own session,

simply create a file (eg “clinical.txt”)

and then in your start.txt file put:

menu clinical.txt

Response recording

The Showplay PPF typically only specifies stimulus events; multi-

channel response monitoring is automatic, depending on available

hardware devices and current parameter settings.

Usually, hardware devices connected to a computer are listed in a

CIGAL configuration file (sysconfig or userconfig) for that computer

and automatically initialized when CIGAL starts.

Device parameter settings are also typically controlled by a

parameter file (eg. pdigmconfig or userconfig), or they can be

specified explicitly in a start-up file (start.imp) or in a PPF file.

CIGAL’s real-time modules poll all active input devices to

automatically record events on keyboard, mouse, or any active button

boxes. It also regularly samples (e.g. 100Hz) active devices that send

continuous data (e.g. respiratory, Cardiac, GSR, eye-tracker,

joystick).

Example Behavioral Data

Storing behavioral/physiological data

• CIGAL stores multiple types of data in ‘pdigm’ archive files
(includes text and binary data)

– Copy of task specification file and CIGAL scripts

– All software and hardware parameter settings

– Real-time run log (records all important events in chron.
order)

– Separate record for each recorded data channel

– Copy of each reformatted output file

• Archive file is self-documenting

– Internal header and optional XML metadata header

• CIGAL reformats data to accommodate analysis tools

– <Events> XML format (stimulus and/or response events)

– FSL “schedule” files

– Performance scores

– Physiological “time/value” text files

CIGAL Start-up Sequence

When you start CIGAL, the program looks for 3 start-up

command files in your current folder and, if found, automatically

runs the commands in each file.

The 3 files are searched for and run in the sequence:

To initialize external devices:

userconfig.imp (if found, used instead of sysconfig.imp)

To initialize your parameter preferences:

cigalsettings.imp (created by SAVE in settings dialogs)

To load menus and other start-up commands:

start.imp (or start.txt)

http://hawking.biac.duke.edu/CIGAL

Username: download

Password:

(contact JV for password)

Download Zip file containing VSync and hooks for CIGAL:

VSyncCIGAL .zip

VsuncCIGAL_ReadMe.txt

All CIGAL software is distributed using the VSync

(version synchronization) program. Instructions for

downloading are available in the BIAC Wiki at:

http://wiki.biac.duke.edu/jvs:cigal:download

The download files themselves are available at:

Download

http://hawking.biac.duke.edu/CIGAL
http://wiki.biac.duke.edu/wiki/doku.php/jvs:cigal:download

Version control program - VSync

VSync is a stand-alone C program for synchronizing a local set

of files with a remote set. VSync can be used on Linux,

Windows, Unix, or Mac OS-X operating systems.

VSync keeps track of files grouped in ‘projects’. A project can

contain any type of file (e.g. text, data, binary programs). All files

in a project are described in a project XML file. A master XML file

is kept in a central repository. Running VSync locally downloads

the remote XML and then generates a local XML table for the

same files on your computer. It compares the two XML files to

look for differences.

To download a VSync project you need to know the project

name, the remote repository location, and you may need a user

ID and password (or a decryption key). This information is

usually automatically found by VSync by reading a local

"vsync_project.xml“ file.

• VSync is flexible and highly automated.

• The “Status” command informs you of any out-of-date files.

• “Download” will automatically update local files.

• All download changes are recorded in a local log file.

• All upload changes are recorded in a repository log file.

• You can selectively specify which files to download

• Old file versions remain on both the local computer (in VSync_bkup)

and in the central repository.

• You can specify any earlier project version for download

• The central repository can be on a web-server or on a local file

system (the default repository is at http://hawking.biac.duke.edu)

• If the project repository is a web-site URL you must have your

computer connected to the internet to use VSync.

• VSync can be used locally as a simple file backup utility.

• By default, VSync simply checks version status. Use it often.

VSync Features

Running VSync on Windows

Status – compare to

central copy

Download – Update local

copy

Show versions – History

of central changes

Show log – History of

local changes

VSync Settings

You can use VSync to go back to any previous

version of the project (see example below).

The default (0) is the most recent version.

Configuration Settings

The Settings menu can be used to check or change how CIGAL

interacts with external devices.

Select “Configuration settings” to specify which devices to initialize.

Most useful available devices will be initialized by default.

Select “Hardware settings” to specify what information you want to

record from the available devices (channels, sampling rates, etc).

Select “Scanner settings” to specify how to interact with the scanner.

Trigger options, default TR and Disdaqs, scan numbering, etc.

Changing and saving Configuration settings will create a file called:

userconfig.imp

Changing and saving Hardware or Scanner settings will create:

cigalsettings.imp

• Test I/O devices using menu option:

Showplay -> Test I/O devices

This tests video, sound, button boxes, scanner trigger,

and analog input signals

• Test paradigms in fast-forward mode using:

Showplay -> Set double display speed

Doubles speed each time. Or set “showspeed” directly.

(for example: showspeed = 0.25 ; run at 1/4th – slow mo.)

Change “showspeed” between Load and Run.

• Real-time feedback on subject performance
Present audio or visual feedback for each response.

Can pre-code to report correct vs incorrect responses.

• View saved data immediately after paradigm

Check performance, physiology, and data logging

Quality Control

Test I/O devices

Check colors

Keyboard &

mouse

Button box

Scanner

trigger

Analog

signals

Mouse or buttons

sound tone

On-line ‘help’ command

Wiki documentation:

wiki.biac.duke.edu/jvs:cigal

There is a tutorial page for using Showplay at:

wiki.biac.duke.edu/jvs:cigal:showplay:manual:tutorial

Wiki documentation can be continuously updated.

Documentation

http://wiki.biac.duke.edu/jvs:cigal

Screen blank at startup

Fix: Click mouse or press <Enter>

Menu click does nothing

Fix: Try again

CIGAL hangs at startup

Fix: Unplug and replug USB for MCC box

Funky paradigm colors via Remote Desktop

Fix: Don’t run paradigms via Remote Desktop

Known CIGAL Bugs

CIGAL, ShowPlay, and VSync were written by Jim Voyvodic.

They are the property of Jim Voyvodic and/or Duke University.

The software is made available for academic research use only, and is

distributed “as is” with no warranty, guarantee, or promise of support.

Disclaimer

