Clinical fMRI & DTI: Mapping brain function and pathways for surgical planning

James Voyvodic, Ph.D.
Brain Imaging and Analysis Center
Department of Radiology
Duke University Medical Center
Acknowledgements

• Jeffrey Petrella, MD - Neuroradiologist
• Allan Friedman, MD - Neurosurgeon
• John Sampson, MD - Neurosurgeon
• Peter Kranz, MD - Neuroradiologist
• James Carter, PA - Neurosurgery
• Moeko Nagatsuka - Student

• Brain Imaging and Analysis Center
• Department of Radiology
• QIBA – Radiological Society of N. America
Functional MRI (fMRI) is primarily used clinically to map speech and motor function.
Diffusion tensor imaging (DTI) is used to map major white matter tracts.
fMRI & DTI
Clinical goals

• Determine location and borders of eloquent cortical areas relative to lesions
• Determine location of major white-matter tracts connecting eloquent areas
• Evaluate risk of post-surgical functional deficits
• Decide whether surgery is advisable
• Plan surgical approach and extent of resection
• Decide whether intraoperative mapping is necessary
fMRI & DTI
Technical goals

• Identify eloquent brain areas
 [sensitivity & specificity]
• Map location relative to anatomy and pathology
 [image registration]
• Evaluate laterality of language dominance
 [relative activation]
• Map edges of areas and proximity to lesion
 [thresholding & quantitative reproducibility]
How does fMRI work?

Blood Oxygenation Level Dependent (BOLD) imaging is sensitive to local activity-dependent changes in blood flow.

“Baseline”

“Task”

from Mosley
Simple visual cues are used for a variety of movement tasks.

Alternating side motion

Bilateral motion
Image acquisition

During a ~5-minute fMRI scan, 20-30 echo-planar images are acquired repeatedly (TR 1.5s) to obtain a time series of hundreds of image intensity measurements while the patient performs many cycles of a simple task. Image intensity varies with the task in some image voxels.
Statistical image processing

An “activation map” is created by comparing the timing of the observed fluctuations in the fMRI images to the expected fluctuations of the BOLD response. Statistical significance identifies “active” voxels.

Many different ways to generate statistical maps:
- image subtraction
- t-test differences
- temporal correlation
- General Linear Model (analysis of variance)
Motor cortex mapping prior to neurosurgery

Average brain activation across 1 task cycle

\[T = 0 \text{ s} \]
$T = 31.5 \text{ s}$
$T = 38.0 \text{ s}$
Limitations of fMRI mapping

- BOLD fMRI is an indirect measure of neuronal function
- BOLD signal arises from nearby capillaries and remote veins
- Vascular BOLD response is slow (~4s delay to peak)
- Tissue pathology may interfere with normal BOLD signal
- fMRI shows any area active with task, not just essential areas
- Ultrafast functional images are sensitive to B0 inhomogeneity
- Functional & anatomical images need to be properly aligned
- Task performance is critical (i.e., attention, accuracy, anxiety)
- Head must remain still (motion is most common problem)
- Cardiac and respiratory fluctuations can also affect results
Many fMRI tasks are available

- **Language**
 - Reading sentence completion
 - Word generation (opposites, verbs, etc)
 - Picture naming
 - Auditory sentence completion
 - English, Spanish, Japanese, Hebrew, German, etc.
 - Passive video viewing

- **Motor**
 - Hand motion
 - Foot motion
 - Mouth motion
 - Imagined motion

- **Somatosensory**
 - External tactile stimulation

- **Vision**
 - Visual field mapping

- **Memory** (not yet)
Language mapping – fMRI for locating brain areas involved in speech

Patients perform a silent sentence-completion task

Old MacDonald had a __________.

vs

Bnd MwjGhdchkj ckr n __________.

15s 15s

The “task” condition makes the patient use “comprehension”, “word finding”, and “expressive” speech areas. It also involves vision and eye movement.

The “control” condition attempts to match vision function and eye movement, but with no language components.
Patient compliance

• Training
 – Patients must actively participate in fMRI
 – Tasks must be appropriate and understood
 – Task fMRI done on patients 5yo to >80yo

• Task performance
 – Anxiety affects fMRI results
 • Getting patients relaxed is important
 – Head motion is most common problem
 – Important to assess performance in real-time
Silent sentence-completion reading task

Real-time fMRI mapping and head-motion plots
fMRI has been validated by direct comparison with intraoperative mapping.
How does DTI work?

Acquire diffusion-weighted images at multiple diffusion orientations (6-60)

Calculate diffusivity and orientation at each voxel

Color-code orientations
DTI – fiber tracking

Start at any ‘seed’ and connect voxels with similar orientations

Overlay fiber tracks on anatomy
fMRI/DTI exam

- 10 min pre-scan assessment and training
- 45-60 min MRI session
 - 10 min anatomical scans (T1 & FLAIR)
 - 15-20 min fMRI – 3-4 tasks (4 min each)
 - 5 min 30-direction DTI scan
- 30-60 min post-scan image analysis
 - Registration of fMRI and DTI with T1 images
 - fMRI statistical analysis of “active” voxels
 - Overlay of fMRI and DTI on anatomical images
- Neuroradiological interpretation
fMRI and DTI maps involve post-processing

Anatomical Images

fMRI statistical maps, overlaid on anatomy or brain surface

Diffusion maps and white-matter tracts from DTI
Visualization image processing

Merge functional activation maps with anatomical images
Reconstruct MRI images and maps for 3-D viewing
Case examples
RH 65yo F with cancer

Orange – sentence-completion map
Green – hand movement map
RH 32yo F with cancer

Orange – sentence-completion map
Green – hand movement map
RH 75 yo F, English+Spanish

Red – English sentence-completion map
Green – Spanish sentence-completion map
LH 23yo F with cancer

Yellow – 1st sentence-completion map
Green – 2nd sentence-completion map
Blue – hand movement map
RH 33yo M with AVM

Yellow – sentence-completion map
Green – hand movement map
Red – mouth movement map
RH 10yo F with AVM

Green – hand movement map
Red – mouth movement map
RH 6yo F with Epilepsy

Yellow/Red – storybook language map
Green – hand movement map
LH 20yo M with cancer

Yellow – sentence-completion map
Green – hand movement map
Red – mouth movement map
20yo M – DTI
RH 55yo M with cancer

Yellow – sentence-completion map
Green – hand movement map
Does fMRI help?

- Improve outcome?
- Save time?
- Reduce costs?
<table>
<thead>
<tr>
<th>Pre fMRI Plan</th>
<th>No Surgery</th>
<th>Biopsy</th>
<th>Awake Craniotomy</th>
<th>Asleep Craniotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Surgery</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Biopsy</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Awake Craniotomy</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Asleep Craniotomy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

Total # of patients = 39

Petrella et al., Radiology 2006
<table>
<thead>
<tr>
<th>Pre fMRI Plan</th>
<th>No Surgery</th>
<th>Biopsy</th>
<th>Awake Craniotomy</th>
<th>Asleep Craniotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Surgery</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Biopsy</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Awake Craniotomy</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Asleep Craniotomy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Total # of patients = 39

Petrella et al., Radiology 2006
Post-surgery questionnaire

fMRI usefulness (N=69) Accuracy (N=45)

48% Very helpful 64% Within 1 cm
42% Helpful 33% Within 2 cm
6% Lateralization only 4% More than 2 cm
 cm
4% Not helpful 0% Counterproductive
0% Counterproductive

6/69 tumor resected despite uncooperative pt
Does fMRI help?

- Improve outcome?
 - Enables more aggressive resection
 - Can enable resection when pt uncooperative
- Save time?
 - Avoids or speeds up intraoperative mapping
- Reduce costs?
 - Shorter surgery
Improving functional imaging

- New pulse sequences
- New tasks
- Improved analysis methods
Passive language tasks

Receptive and expressive language areas can also be activated using passive tasks such as listening to a story or watching a video.

4 min video with narration
In alternate 15s blocks

Red – sentence-completion task
Green – video narration
DTI through optic chiasm tumor
Reproducibility of fMRI mapping

- Task performance variability
 - Accuracy, attention, anxiety can change over time
- Magnetic field strength and pulse sequence dependence
- Physiological/metabolic variability
 - E.g. caffeine, tobacco affect vascular hemodynamic response
- Biological variability
- Statistical threshold definition of ‘activity’
Statistical thresholding can be subjective

A constant pattern of brain activity can result in very different activation maps, depending on statistical threshold
Statistical significance of activation changes as a function of scan time

Activation mapping as percentage of local excitation (AMPLE)
Activation mapping as percentage of local excitation (AMPLE)
AMPLE maps are consistent across scans or scanners.

<table>
<thead>
<tr>
<th>Subject 1</th>
<th>1.5T Spiral In</th>
<th>1.5T EPI</th>
<th>1.5T Spiral Out</th>
<th>4.0T Spiral Out</th>
<th>4.0T Spiral In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard t-maps (t ≥ 4.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPLE t-maps (t ≥ 50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anatomical spread of active voxels

>= 30%

>= 50%

>= 70%

>= 90%
AMPLE maps improve language reproducibility
Language AMPLE maps improve reproducibility

Upper 40% of AMPLE peaks are most reproducable
Conclusions

- fMRI for language laterality and location
- fMRI for motor cortex mapping
- DTI for mapping WM pathways
- Help assess risks of post-op deficits
- Help plan surgical approach
- Speeds up intra-op mapping
- Can be used when intra-op mapping fails
- Technology continues to improve