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This study presents an integrated approach to on-
ine fMRI data processing that combines real-time
aradigm control and real-time MR image statistical
nalysis with nearly real-time integration of fMRI
ehavioral and physiological data. The real-time para-
igms involve accurate timing control of multiple

ndependent processing streams for stimulus presenta-
ion, physiological monitoring, behavioral response
ecording, and scanner synchronization. The real-time
mage analysis provides high resolution MR image
econstruction, head motion detection, translational
otion correction, and t test statistical activation
aps for either block design or single-trial based

aradigms. The near real-time analysis allows physi-
logical and behavioral data collected during a para-
igm to be combined with the MR time series and
rovides extended data filtering and statistical process-

ng within a few minutes after the end of the scan. This
ntegrated approach improves fMRI reliability for both
linical and research studies. r 1999 Academic Press

INTRODUCTION

Although functional magnetic resonance imaging
fMRI) provides unprecedented opportunities for observ-
ng human brain function noninvasively, the technique
as thus far lacked the reliability needed to make it a
ractical approach for many clinical and research appli-
ations. The small signal changes observed across a
ime series of MR images are only partially due to
ask-specific effects; they also involve a variety of
ask-independent variables such as physiological fluc-
uations caused by the cardiac and respiratory cycles
Jezzard et al., 1993; Weisskoff et al., 1993; Noll and
chneider, 1994; Hu et al., 1995; Le and Hu, 1996), as
ell as task-related confounds such as head motion,
ttention, anxiety, or poor task performance. Variations
n any of these parameters can affect the fMRI time
ourse and obscure the paradigm-specific patterns of

rain activation being investigated. Problem conditions p

91
ue to any component variable are usually not detected
n time to be corrected because fMRI data sets tend to
e quite large and are therefore usually not analyzed
ntil after the subject has left the scanner. In practice,
herefore, obtaining usable fMRI results is often lim-
ted to scanning cooperative subjects under optimal
onditions. This limitation is a problem for many
esearch studies and is clearly a major obstacle for
pplying fMRI in a clinical context.
FMRI reliability could be improved by monitoring
any different physiological and behavioral param-

ters during scanning and by performing MR image
rocessing on-line in real-time. Serious problem condi-
ions, such as poor task performance or excessive
otion, could thus be identified in time to correct them

nd repeat the scan. Less serious sources of variation in
hysiological and behavioral parameters can be inte-
rated into the analysis either to filter out related
uctuations in the MR time course or to sort the
ask-dependent time series data into different subcondi-
ions.

Previous studies involving real-time fMRI analysis
Cox et al., 1995; Goodyear et al., 1997; Cohen et al.,
998; Frank et al., 1998; Posse et al., 1998) have
emonstrated the feasibility of on-line processing. In
eneral, however, these approaches lack the flexibility
o cope with fMRI paradigms of different designs (e.g.,
yclic or randomized block designs or single trial) or the
bility to reduce nonspecific noise sources associated
ith scanner instability, detector noise, and image

econstruction artifacts. In addition, most do not in-
lude the subject’s behavioral (task performance and
ead stability) and physiological (cardiac and respira-
ory oscillations) variables into the on-line statistical
rocessing of MR images.
The problem in routinely achieving comprehensive

MRI analysis in real-time for a wide range of applica-
ions lies in efficiently integrating many different pro-
esses all running in parallel. These largely indepen-
ent processes include audio or visual stimulus

resentation, behavioral and physiological response
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92 JAMES T. VOYVODIC
ecording, the scanner’s acquisition of MR images, and
tatistical image analysis. Such parallel processing can
e achieved by time-sharing multiple tasks on a single
omputer, which facilitates coordination and passing of
nformation between tasks, and/or by distributing dif-
erent tasks across multiple computers, which eases
he real-time processing burden on any single machine.

In designing software for real-time fMRI a number of
mportant performance constraints must be consid-
red. For example, the subject’s environment must be
arefully controlled and monitored throughout each
can with accurate timing and smooth presentation of
ensory stimuli, while at the same time achieving
eal-time recording of subject performance. Recording
ardiac and respiratory oscillations during each scan
an significantly improve subsequent fMRI results (Hu
t al., 1995; Le and Hu, 1996). It is also essential to
ave accurate synchronization between the paradigm
nd the MR scanner, rapid MR data transfer between
he scanner and the analysis software, and efficient
ransfer of task timing and other paradigm data be-
ween the paradigm and analysis components. The
ntire system should be sufficiently flexible to accommo-
ate many different activation paradigms and analysis
trategies and yet easy enough to use so that it can be
outinely applied without the need for complicated user
nteractions. Finally, it is not enough that fMRI analy-
is be done quickly; the statistical processing itself
hould also be capable of providing results of compa-
able quality as those that could be obtained by off-line
rocessing methods.
This report demonstrates an approach to improving

MRI reliability that combines flexible software tools
or accurate real-time paradigm control and on-line
MRI analysis. Paradigm control uses a single standard
ersonal computer to achieve continuous real-time
aradigm performance that includes simultaneous
timulus presentation, automatic scanner synchroniza-
ion, and monitoring of a variety of voluntary and
hysiological responses. The fMRI analysis can per-
orm MR image reconstruction, head motion detection,
ranslational motion correction, and t test statistical
ctivation maps for either block design or single-trial-
ased paradigms, all in real-time. (For this discussion,
eal-time fMRI analysis is defined as processing and
isplaying the data during the scan itself and as fast as
he scanner can acquire the data.) The analysis can also
ombine the paradigm’s behavioral and physiological
ata with the MR time series for extended data filtering
nd statistical processing within a few minutes after
he end of the scan. These software tools can all be
oordinated via a simple menu-driven interface on the
aradigm computer, thus demonstrating that reliable
eal-time fMRI can be efficiently accomplished by a

ingle MR technologist on a routine basis. p
METHODS

ardware
Paradigm control. Functional MRI paradigms were

mplemented using a Macintosh computer (either
uadra 660 AV computer or a PowerMac 7500; Apple
omputer Corp., Cupertino, CA) containing an analog/
igital processing board (MacADIOS II, GW Instru-
ents, Cambridge MA). Visual stimuli were presented

o the subject in the MR scanner via a standard video
rojector (Epson America Inc., Torrance, CA) that back-
rojected images onto a translucent screen mounted
bove the subject’s chest within the bore of the scanner.
he video projector was contained within a custom-
uilt RF shielded box (MRA Inc., Washington, PA); all
onnections between the computer in the scanner con-
rol room and the shielded box in the magnet room were
ia fiber optics (Thulborn et al., 1996). Audio stimuli
ere presented via speakers mounted within the RF

hielded box, with sound conveyed from the speakers to
he subject via hard plastic tubing and audio head-
hones placed inside a pair of sound deadening ear
uffs.
MR acquisition and analysis. MR images were ac-

uired using a 3.0 Tesla Signa scanner (General Elec-
ric Medical Systems, Milwaukee, WI) with echo-
lanar imaging capabilities (Advanced NMR Systems,
nc, Wilmington, MA). Image analysis was performed
n a SGI O2 workstation (R10000 CPU), a SGI Power
hallenge L computer containing 8 R10000 CPUs

Silicon Graphics Corp., Mountain View, CA), or a Sun
ltra 2 (Sun Microsystems, Mountain View, CA). The
nalysis computers were connected to the scanner’s
ata acquisition computers via a high speed CDDI
etwork (approximately 900 Kbytes/s throughput) and
o the Macintosh computers via a 10BaseT Ethernet
ink.

oftware

The MR scanner operated under version 5.2 Signa
oftware (GE Medical Systems) and echo planar imag-
ng was controlled using the APD2 software package
Advanced NMR). The Macintosh computers used ver-
ion 7.5 MacOS, the SGI analysis computers used Irix
.2 (Power Challenge) or Irix 6.5 (O2) operating sys-
ems, and the Sun Ultra used Solaris 2.5 operating
ystem. In addition to this commercial software these
tudies depended on three locally developed programs:
IGAL, MacDaemon, and fScan, which are briefly
escribed in the following sections.
CIGAL. Paradigm control software was written us-

ng the Compilable Imaging, Graphics, and Analytical
anguage (CIGAL, formerly known as IMAGR;
oyvodic, 1986, 1996; Purves and Voyvodic, 1987) run-
ing on a Macintosh. CIGAL is a general purpose

rogramming language designed for scientific image
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93REAL-TIME fMRI PARADIGM CONTROL AND ANALYSIS
rocessing, graphics, and the control of scientific experi-
ents. FMRI paradigms were prepared using CIGAL’s
igh-level data manipulation and menu features to
enerate or import image, text, or sound stimuli and
reate data tables specifying the sequence and timing
f paradigm events. In order to achieve real-time
aradigm performance for fMRI, the CIGAL language
as extended by the addition of a real-time command
rocessor. The central feature of the real-time proces-
or is its ability to specify the exact time (to within 20
s), at which each operation is to be executed.
The real-time processor allowed multiple processing

treams to execute in parallel and all in real-time. This
as accomplished by creating independent process
ointers to control the execution of separate blocks of
ode, and then automatically interleaving the progress
f each processing stream to ensure that every opera-
ion was performed as close as possible to its scheduled
xecution time. The obvious problem with multiple
arallel streams was that the real-time accuracy in any
ingle stream could be off by as much as the time it took
or the slowest operation performed by the other
treams. This problem was minimized by making the
ime to execute each individual operation short, and in
ost cases of known duration (see Results). A priority
ierarchy was used to resolve timing conflicts.
MacDaemon. Unix command files generated by
IGAL on the Macintosh were executed on a Unix
orkstation by means of a simple C program called
acDaemon written in-house. Communication be-

ween the Macintosh and the host computer was en-
irely via Unix disk files that were cross mounted as
acintosh files using K-AShare/K-Talk software (Xinet,

nc., Berkeley, CA). MacDaemon was executed on the
ost computer and simply waited for a particular file to
ppear in its cross mounted directory. Once that file
ppeared its contents were read and each line was
xecuted as a standard Unix shell command line. This
imple scheme provided the Macintosh with an efficient
ay to initiate the execution of Unix-based analysis

oftware.
fScan. All fMRI image analysis in this study was

erformed by fScan, a custom written C program run
n a Unix-based computer, either initiated directly on
he host or by the paradigm computer via MacDaemon.
Scan was used for a variety of analysis tasks as shown
n Results. This was possible in large part due to its
exibility in accepting input data. Thus, for real-time
rocessing it read image or raw k-space data directly
rom the scanner’s disk files, waiting as necessary for
he data to be acquired, whereas for postprocessing it
ead MR raw or image data either from the scanner or
rom previously saved local files. It could read the
ntire data set or any rectangular subset. It was
imilarly flexible about accepting other time course

nput data, such as the timing of different task condi- t
ions, the subject’s behavioral responses or physiologi-
al wave form recordings. When combining data with
ifferent sampling rates fScan converted all time courses
nternally to the time base of the MR acquisitions.

Having read the data fScan also provided flexibility
n data processing, either one acquisition at a time (e.g.,
mage reconstruction, image motion estimation, spatial
ltering, intensity normalization, calculation of means
nd variances, generation of t test activation maps, or
ingle trial time course averaging) or one voxel time
ourse at a time (e.g., temporal filtering, detrending,
pike filtering, spectral analysis, correlation, cross-
orrelation, or regression with a reference time course).
n general, the former operations could all be per-
ormed in essentially real-time during scanning (see
esults), whereas the latter needed to wait for the
ntire time course to be acquired before they began.
ptimal software performance was achieved by combin-

ng efficient processing algorithms with flexible run-
ime options that allowed fScan to process multiple
ime courses or matrices in parallel using multiple
PUs on a single computer or to break up the data set

or distributed processing across multiple worksta-
ions. FScan also provided flexible X-window based
isplay tools for real-time presentation of activation
aps and head motion plots, with interactive options

or manipulating and querying all of its different types
f data.
Although most of fScan’s statistical options involved

tandard fMRI algorithms, some were less straightfor-
ard and are briefly summarized here. Pulse sequence-
ependent image reconstruction was implemented for
cho planar scanning involving single shot acquisitions
r two-shot mosaics, using full or partial k-space recon-
truction, with optional optimization filtering to reduce
hosting. Head motion was estimated by plotting
hanges in the spatially weighted center-of-intensity
or each image in both the horizontal and vertical
imensions, and for the entire 3-D volume in the
ormal direction (see Fig. 3). Motion correction filtering
as patterned after the method of Eddy et al. (1996)
nd involved using the image motion estimates to
djust the raw k-space data matrix to compensate for
ranslational motion within the image plane before
ndergoing a second image reconstruction pass. Voxel
ime course ‘‘detrending’’ removed low frequency varia-
ions by subtracting out a smooth low frequency time
ourse based on a quadratic spline curve fit through
our evenly spaced nodes.

The most flexible time course filtering tool allowed
oxel time courses to be regression filtered against any
eference time course. This was done by sorting time
oints by reference value, calculating a smoothed mean
ime course curve across the parameter range, and then
ubtracting the appropriate mean variation from every

ime point in the MR signal (after the method of Hu et
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94 JAMES T. VOYVODIC
l., 1995; see Fig. 6). Up to 10 different time course
arameter lists could be regression filtered in a single
ass. Regression maps were generated by calculating a
ean reference-sorted time course for each voxel, as for

egression filtering, and then calculating the variance
f the reference-binned time course divided by the
ariance of the entire time course (see Figs. 4 and 6).

erformance Testing

The relative efficiency of fScan’s processing algo-
ithms, and its ability to achieve real-time perfor-
ance, were tested by timing the execution of multiple

ata analysis runs. Functional MRI data sets of three
ifferent matrix sizes were collected in 8-min scans at
he scanner’s maximum duty-cycle acquisition rates.
he three acquisition matrices used were: 128 3 64 full
-space, 256 3 128 partial k-space, and 512 3 128
artial k-space 2-shot mosaic (zero filled to 512 3 256
or image reconstruction).

Processing speed was determined in two ways. First,
he time required to perform each individual compo-
ent of the analysis was measured independent of the
canner’s acquisition rate; this was done by first acquir-
ng an entire data set and then starting the analysis.
econd, the actual real-time processing rate was mea-
ured by analyzing and displaying fMRI results during
he scan itself and measuring the latencies between the
ime of different stages during data acquisition and the
ime at which the associated data appeared in the
isplayed results. For these latency measurements
nly the SGI Power Challenge computer was used. The
omponent speed measurement tests were run at night
hen the computers were relatively not busy, whereas

he latency measurements were performed in the morn-
ng (between 9 a.m. and noon) under normal usage
onditions for both the computers and the network. For
ll measurements the tests were repeated at least three
imes to determine means and standard deviations.

aradigms

For testing purposes, three different fMRI paradigms
ere used. In the first, subjects watched a central
xation crosshair on a black background, around which
ppeared radially moving white dots in animated 20-s
locks, separated by 5-s fixation-only blocks; they were
nstructed to move a joystick and randomly press two
utton box keys during the animated sequences (see
ig. 1). In the second paradigm, subjects fixated on a
entral crosshair while a hemifield 8 Hz flickering
heckerboard rotated about the fixation point (after
ngel et al., 1996), making a complete revolution every
2 s (see Figs. 3–5). For the third paradigm, subjects
lternated between 30-s blocks in which they either

ead simple sentences (black text on a white screen) D
nd answered associated true/false questions using a
utton box, or scanned a line of consonant-only text and
hen randomly pressed a button (see Fig. 6). Pulse
equence parameters for each paradigm are described
n the figure legends in the Results section.

In addition to presenting stimuli, all CIGAL para-
igms also recorded heartbeat and respiration signals
ontinuously throughout each scan, sampling both
hannels at approximately 100 Hz. The subject’s behav-
oral responses were recorded from analog joystick
nputs sampled at 100 Hz and from digital push-button
nputs sampled at over 1 KHz. Except where otherwise
tated, paradigms were programmed to begin task
xecution automatically as soon as they detected that
he scan had begun, as indicated by a change in the
nalog channel connected to the current monitor for
ne of the scanner’s gradient amplifiers. In addition to
hese fMRI paradigms carried out on human subjects,
ther fMRI scans were performed using inert phantoms
n order to assess the speed and reproducibility of data
rocessing and data transfer operations. The specific
canning and analysis parameters used for each of
hese paradigms are described in the Results section.

aradigm Analysis

For real-time fMRI analysis the CIGAL paradigm
rogram generated a text file specifying fScan analysis
ommands and sent it to the analysis workstation. For
he analysis, raw data were read from the scanner as
hey were acquired, transferred across the local net-
ork and reconstructed into MR images; these images
ere then Gaussian filtered and separated by task

ondition to calculate t test activation maps. Other
tatistical tests performed included measurements of
ean image intensity and head motion during the

can. The results were displayed on an X-windows
erminal in the scanner control room, with the display
eing updated once per task condition for activation
aps and every eight images for motion plots.

MRI Scans

Subjects were normal healthy volunteers between
he ages of 18 and 45. Each subject was screened for
ontraindications to MRI and gave informed consent
efore entering the magnet. Subjects were fitted with
oam ear plugs and sound dampening ear muffs to
educe acoustical noise. Each subject was connected to
he scanner’s respiratory bellows monitor and a finger
ulse-oximeter (Nonin Medical Inc., Minneapolis, MN).
cans of the brain were performed using a standard
ird cage quadrature head coil (GEMS, Milwaukee,
I). An echo planar gradient echo pulse sequence was

sed with a 25 ms TE, 90° flip angle, 40 3 20 cm FOV,
nd matrix sizes of 128 3 64, 256 3 128, or 512 3 128.

etails of the matrix used and the number of slices and
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95REAL-TIME fMRI PARADIGM CONTROL AND ANALYSIS
R times are specified where appropriate in the Re-
ults.

RESULTS

aradigm Software Real-Time Performance

Before running fMRI paradigms CIGAL’s real-time
aradigm performance was first evaluated by measur-
ng the speed of its real-time operators. Using a Macin-
osh Quadra 660AV computer, 52 of the 101 real-time
perators had mean execution times of under 100 µs;
his time included all standard command overhead as
ell as the time it took to read the computer’s real-time

lock (approximately 20 µs). An additional 28 real-time
perators had mean execution times of 1 ms or less. Of
he remaining 21 operators only 7 took more than 10
s to execute; those are therefore the only operations

ikely to cause any timing conflicts among multiple
arallel processing streams executing commands at
00 Hz or less. These slowest operators all transferred
locks of data for either images (.300 3 200 pixels) or
ound and took approximately 20–60 ms to execute.

FIG. 1. Interleaved timing for sample CIGAL real-time paradig
cales (times in seconds). The top seven traces in each panel indicate t
ick mark indicating the approximate amount of time needed to pro
resenting the visual stimulus (erase the screen, draw a crosshair, cha
static fixation crosshair followed by 20 s of continuous 22 Hz anim

how the timing of response recording events (waiting for button pre
he bottom four plots show the data that were actually recorded (* a
erasing the screen, drawing the crosshair, changing the video palet
eal-time processing stream, whereas the three response recording e
ote the regular timing of the stimulus events and smoothness of the
omparing execution times across different Macintosh t
odels (PowerMac 7100/80 or 8100/100, Quadra 660
V, or Performa 475) gave similar results, presumably
ecause most of the operations are rate limited by the
ideo display and peripheral hardware devices, rather
han the CPU itself.

The accuracy of real-time control for the real-time
rocessor was determined by measuring the difference
etween the time at which the software specified an
perator should begin execution and the time at which
t actually began. Running only a single processing
tream, event timing was accurate on average to within
.7 6 19 µs (mean and SD) over a sample of 500,000 test
vents, with over 98% of all events starting within 1
lock tick (20 µs) of the specified time. Of 500,000 test
vents only 1 started more than 600 µs after the
cheduled time; that event was late by almost 4 ms.
These accuracy measurements therefore reflect the

egree of real-time control available to the user for
nitiating the execution of any operation, in the absence
f any prior or parallel timing conflicts. The only
perators that could not be controlled with this accu-
acy were those that involved video display changes

rogram. A and B show the same data plotted on two different time
iming of different events during the paradigm, with the width of each
each event. The top four traces show the major events involved in

e the color palette, transfer a new image), which cycled between 5 s of
on of radially moving dots (410 3 210 pixels). The next three traces
s, recording analog physiological data and analog joystick data), and
1 symbols indicate which of two buttons). The four stimulus events
and copying an image to the screen) were all controlled by a single
ts were each handled by separate asynchronous processing streams.
ponse recordings in B.
m p
he t
cess
ng
ati
sse
nd
te,
ven
res
hat were forced to occur in synchrony with the video
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96 JAMES T. VOYVODIC
efresh rate. CIGAL automatically rescheduled such
perators to start 3 ms prior to the next video refresh.
For fMRI paradigms, in which multiple processing

treams executed in parallel, the effective real-time
ccuracy was necessarily less than the ideal accuracy
emonstrated above. Figure 1 shows the actual execu-
ion timing for a typical paradigm. This paradigm
nvolved four asynchronous processing streams execut-
ng in parallel: the first controlled a continuous ani-

ated video stimulus in which the video palette was
hanged every 45 ms and a complete new image
410 3 210 pixels) was copied from program RAM to
ideo memory every 360 ms; another read cardiac and
espiratory oscillations on two analog channels every
0 ms; a third sampled two additional analog channels

FIG. 2. Synchronization timing between paradigm and scanner.
shows the timing of stimulus events generated by the paradigm

oftware every 1000 ms plotted as tick marks above the horizontal
ine, and scanner image acquisitions with a TR of 1000 ms plotted as
ick marks below the horizontal line. The stimulus events indicate
he onset of 100 ms flickering checkerboard. The first 4 s and the last
s of a 900-s scan are shown. MR images were initially acquired with
phase relative to the stimulus, but by the end of the 900 s the pulses
ad a phase delay of 75 ms relative to each stimulus. B plots the
hase delay between paradigm stimulus and MR image acquisition
or the entire time course of six scans similar to that shown in A. The
op three curves show scans in which the stimulus and acquisition
ere started together and then not resynchronized during the rest of

he scan. Variability in the delay interval arose from variability in the
0 Hz line signal used to control scanner timing. The bottom three
urves show scans in which the stimulus was resynchronized on
very MR image acquisition. Variability in the delay interval was due
o each stimulus change being phase-locked to the computer’s video
efresh cycle. (Scan parameters: Gradient echo EPI, ma-
rix 5 128 3 64, single slice, total time 5 900 s.)

FIG. 3. Progressive fScan real-time analysis. Each row in A show
oint for nine oblique axial slices during a visual field mapping para
otate around a central fixation point once every 32 s. The display w
aps gradually revealed the activated visual cortex. B shows the ima

he horizontal axis. This display appeared gradually with eight new t
urves at the top plot relative mean image intensity for each slice
orizontal and vertical centers of the images for each slice and the bo
olume in all three dimensions. The distance between the two sets of moti

ere: GE EPI, TR 5 2 s, TE 5 25 ms, FOV 5 40 3 20 cm, matrix 5 128 3
very 10 ms to record the X and Y positions of a joystick
eing moved by the subject; the last continuously polled
he response buttons on a digital input channel and
isplayed a colored spot on the video screen for the
nvestigator (outside the subject’s viewing region) each
ime a button was pressed. Figure 1B shows that the
egular 100 Hz sampling of the physiological and
oystick channels was briefly affected by each video
mage transfer, although this did not significantly
ompromise the shape of the recorded wave forms.
ideo animation was observed to be very smooth

hroughout the paradigm, which is reflected in Fig. 1 by
he regular timing of palette controlled frame changes
nd video memory transfers.

ynchronization with MR Scanner

Real-time synchronization between the paradigm
oftware and the MR scanner was tested in two ways:
y synchronizing the paradigm to the scanner and by
ynchronizing the scanner to the paradigm. In the first
ethod the paradigm program was started before the

canner and then waited for the scanner to start
ulsing. CIGAL detected the start of scanning as a
oltage change on an analog input channel connected to
he current monitor on one of the gradient magnet
ower supplies, so that the paradigm timing began
utomatically as soon as the scan began. Figure 2A
hows an example of the timing differences observed
etween the scanner and paradigm during the course of
15-min scan. In the example the scanner’s nominal

000-ms TR was actually 1000.083 ms on average,
esulting in a 75-ms phase difference by the end of the
can. Such timing differences arose from variability in
he 60 Hz line signal, to which the GE scanner automati-
ally phase locked every TR interval. As the accuracy of
he local electrical utility company’s 60 Hz signal is
0.06 Hz (60.1%), in the worst case the scanner
cquisition timing could be off by up to 900 ms over a
5-min scan. In our timing tests the actual observed
ariation was typically under 100 ms over 15 min,
lthough as seen in Fig. 2B the line frequency could be
bserved to vary even within a single scan. For most
MRI paradigms 99.99% timing accuracy is probably
ufficient, so that careful synchronization at the start of
R acquisition usually ensures adequate synchroniza-

ion throughout the scan.
For high temporal resolution imaging more precise

maps (yellow: t . 5 4, green: t , 5 24) generated at a single time
m in which the subject watched a flickering hemifield checkerboard
updated every 16 s and the figure shows every 4th time point. The t
motion plots generated for the same scan, with time represented on
points added every 16 s. The figure shows the final result. The blue
e red and green curves in the middle plot the intensity weighted

m set of curves plot the displacement of the center of each nine slice
urves corresponds to a displacement of 1 voxel unit. The scan parameters
s t
dig
as
ge
ime
. Th
tto

on c

64, voxel size 5 3.2 3 3.2 3 3 mm, total scan time 5 640 s.
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98 JAMES T. VOYVODIC
ynchronization was achieved by having the paradigm
oftware continuously monitor the scanner’s gradients
nd resynchronize the paradigm with every echo-
lanar data acquisition pulse (Fig. 2C). This approach
as tested using 15-min scans of a phantom and
easuring the delay intervals between each 1 Hz video

timulus and the corresponding 1 Hz MR acquisition
ulses (TR 5 1000 ms). Three successive 15-min scans
ithout continuous resynchronization resulted in delay

ntervals with 54-, 58-, and 107-ms variability between
ach stimulus onset and the subsequent MR acquisi-
ion (Fig. 2B). Once again this variability was because
he nominal 1000-ms TR interval varied with fluctua-
ions in the 60 Hz line signal. Performing the same test
n three scans with continuous resynchronization re-
ulted in intervals with 15-, 16-, and 19-ms variability
Fig. 2C). In this case the variability and saw-toothed
atterns seen in the delay interval plots were because
very video stimulus change was automatically phase-
ocked to the display system’s video refresh rate. Except
or this 15-ms video phase-locking limitation, therefore,
esynchronization ensured that there was a nearly
onstant time interval between each visual stimulus
resentation and subsequent scanner acquisition.
Another synchronization strategy tested was to have

he paradigm software control scanner timing by explic-
tly triggering each TR interval. In this case the
canner was started first but did not actually acquire
R data until after the paradigm was started and

egan to send trigger pulses to the scanner’s external
rigger input. Although the timing of this trigger pulse
ould be as accurate as the real-time processor allowed
e.g., within 600 µs as shown above when flagged as a
igh priority event), such accuracy proved to be undesir-
ble because triggering at a fixed TR interval resulted
n trigger pulses at varying phases of the 60 Hz line
ycle and high noise artifacts in the resulting MR time
eries (not shown). These noise artifacts disappeared
hen the specified TR interval was phase-locked to the

ine frequency using CIGAL’s real-time analog trigger
perator. The paradigm program could deliver such
hase-locked trigger pulses and also compensate for
rifts in the line frequency to ensure that the actual TR
nterval always remained within 17 ms (i.e., 1 line
ycle) of the nominal interval. Given the extra overhead
nvolved in generating accurate phase-locked trigger
ulses, however, it has proven to be advantageous for
he paradigm software to trigger the scanner only for
cans that require very accurate time resolution or
ecessarily involve TR’s of varying time intervals.

n-Line fMRI Analysis

An example of fScan’s real-time fMRI analysis for a
IGAL paradigm is shown in Fig. 3. This scan involved
visual field mapping study in which the subject
xated on a central spot, about which slowly moved a w
ickering hemifield checkerboard pattern. For real-
ime processing the data were copied off the scanner as
hey were generated, a copy was stored on the host’s
ocal disks, and differences in cortical activation were
nalyzed by a t test. The figure shows the gradual
mergence of t map differences in activation in the two
ortical hemispheres, corresponding to the timing of
rimarily left versus right sided stimuli. The analysis
lso progressively plotted image stability curves as an
ndex of image motion. The display was updated every
6 s during the scan.
Once the scanner had finished acquiring data a

econd pass of fScan processing was used to analyze the
ata set more comprehensively. For fMRI scans using
he CIGAL paradigm software any behavioral or physi-
logical data were copied from the paradigm computer
o the analysis computer within 15 s of the end of the
aradigm and so were immediately available to be
ntegrated into the second pass of fScan processing.
igure 4 shows an example of a typical second pass of

Scan’s on-line analysis using the same visual mapping
ata set as that shown in Fig. 3. All the results shown in
he figure were generated and displayed within 1 min
fter the end of the scan, using the reconstructed
mages already generated in real-time by the first pass
f fScan. This second, ‘‘nearly real-time,’’ analysis in-
luded a display of the raw data which could be
nspected for signs of any data acquisition problems,
nd it performed a cross correlation analysis to calcu-
ate maximum correlation coefficients and optimal
timulus phase for each voxel. It also analyzed the
ardiac and respiratory wave forms to identify peaks
nd determined the phase and oscillation rate of each
ave form corresponding to the time of each MR data
cquisition. The time courses of all these parameters
ere displayed as well as the time courses of interac-

ively selected single voxels or groups of voxels.
This second pass also generated ‘‘regression maps,’’
hich graphically indicated the amount of signal vari-
bility in each voxel time course that could be attrib-
ted to the variability in a specific parameter. In the
xample, each voxel time course was sorted by six
ifferent parameters resulting in maps indicating the
elative magnitude and spatial distribution of signal
ariability due to: task condition, cardiac phase, car-
iac rate, respiratory phase, respiratory rate, and time.
ime was used as a regression parameter to determine
he baseline stability of the time course across the
ntire duration of the scan; this tends to be the largest
ource of variability, as was the case for the scan shown
n Fig. 4. This data set also showed typical cardiac
hase regression maps highlighting the major blood
essels, and respiratory phase regression maps with
ost variability around the edges of the brain. As

xpected, the task reference produced regression maps

ith localized sites of variability, corresponding to the
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99REAL-TIME fMRI PARADIGM CONTROL AND ANALYSIS
reas detected by the t test and correlation maps,
hereas cardiac and respiratory rate regression maps
ere relatively dark because those variables remained

elatively constant throughout the scan.
The anatomical regions associated with functional

ctivity could be identified more accurately during the
n-line analysis by mapping the activation maps onto
igher resolution structural images, provided that a
eries of structural images had been acquired prior to
he functional scan. Figure 5 shows the functional
hase maps generated in the scan from Figs. 3 and 4
uperimposed over a spoiled GRASS data set that
overed the entire head with approximately 1-mm
esolution in each dimension. The two data sets were
pproximately aligned by fScan automatically and then
he alignment was improved interactively by a manual
djustment that took about 15 s. Such high resolution
apping could also be done in the first, real-time, pass

f the structural images were available.
Rather than simply plotting maps of signal variabil-

ty, fScan’s regression processing algorithm could also
e used to filter parameter-specific variability out of
ach voxel time course. An example of such regression
ltering is shown in Fig. 6. This shows the regression
aps and task t test activation maps from a language

tudy in which the subject viewed alternate 30-s blocks
f either consonant-only text or simple English sen-
ences. The maps were generated both before and then
gain after filtering out variability associated with
ime, as well as both phase and rate for cardiac and
espiratory oscillations. On an SGI O2 computer fScan
ook approximately 1 min to regression map or regres-
ion filter all of the variables for the entire data set
using an automatic region of interest mask option to
gnore voxels outside of the head).

In the example of Fig. 6 there was considerable
ariability in the subject’s cardiac and respiratory
ates, which was apparently due to the subject being
lightly more anxious when reading the sentences than
hen scanning the nonsentences. The prefiltered t test
ap exhibited considerably more regions of activation

han are normally seen for this language task. Because
he physiological parameters were not completely inde-
endent of the task conditions, filtering out those
ariables significantly reduced the amount of activa-
ion seen in the postfiltered t map at a given t threshold
t . 53.5 in Fig. 6). Although it still showed some
typical areas, the resulting t map clearly showed
ernicke’s language area as well as a weak signal in

he region normally corresponding to Broca’s language
rea, both in the left hemisphere.

nalysis Software Real-Time Performance

The speed of fScan’s on-line fMRI image analysis was
uantified for three different size MR acquisition matri-

es and compared on two different computer platforms
o determine how much computer power was necessary
o achieve real-time results for each matrix size. The
tandard functional analysis involved displaying pro-
ressive plots of image stability to indicate head mo-
ion, and t test maps to show regional changes in MR
ignal intensity that were correlated with the task
onditions. This analysis started either with image
ata reconstructed on the scanner or raw k-space data,
n which case fScan reconstructed the images itself.

Table 1 shows the processing times for each of the
teps involved in fScan’s real-time analysis. For the
mallest size matrix (128 3 64) the ANMR echo-planar
omputer system was capable of reconstructing images
lmost as fast as the raw data were acquired, so that
aw data and image data were both available almost
mmediately to be read by the fMRI analysis. Using the
lready reconstructed images allowed nearly real-time
erformance for scans using 128 3 64 matrices. How-
ver, to truly keep up with MR data acquisition, even
or these small matrices, image reconstruction had to
e done remotely. All three computers tested were able
o perform image reconstructions faster than the data
cquisition rate, so that better overall performance
ould be achieved by transferring only the raw data
rom the scanner. The image stability and motion
stimation calculations as well as the t test calculations
ook relatively little time and could easily keep up with
he data acquisition rate.

For the larger matrix sizes, image reconstruction on
he echoplanar system’s computer lagged far behind
he rate at which the data were acquired. Table 1,
owever, shows that the SGI computers could recon-
truct the 256 3 128 partial k-space acquisitions in
nder 400 ms per image using a single CPU, which was
till faster than the acquisition rate. For 512 3 128
-shot partial k-space acquisitions a single SGI CPU
ook over 1500 ms per image to reconstruct. Using 6
PU’s in parallel, the effective reconstruction times
ould be reduced to 76 and 325 ms/image for the 256 3
28 and 512 3 128 matrices, respectively. These times
ere more than fast enough to achieve real-time perfor-
ance. Fast reconstruction rates made it possible to

stimate head movement after the first reconstruction
nd then adjust the raw k-space data so that a second
econstruction pass could generate images that were
ll aligned with respect to their centers in real-time.
lthough such motion correction, based on the Fourier
pace method of Eddy et al. (1996), was limited to
n-plane translational motion, this first order correc-
ion significantly reduced motion artifacts for many
cans. Because the center-of-intensity calculation is not
true measure of head position, however, this registra-

ion step can generate artifacts in slices that include
ye or mouth movement and so is not yet a routine part
f our real-time analyses.

Although fScan’s analysis was fast enough to keep up
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FIG. 4. Near real-time fScan analysis. These data are from the sa
e displayed within 1 min of the completion of the scan. A and B show
he correlation coefficients and phase maps resulting from a time cour
plots a portion of the cardiac and respiratory data collected during th

lots as described in the legend of Figure 3. G shows multiple physi
eference and the MR time series for a selected ‘‘activated’’ voxel. H pl
egression maps plotting the relative contributions of six different refe
he regression maps were only calculated over the head (brightest) p

ntensity scale.
me visual mapping scan as described in the legend of Fig. 3 and could all
the magnitude and phase displays of the raw k-space data. C and D show
se cross correlation with a boxcar reference wave with 32-s period. Panel
e scan, with tick marks indicating each peak. F shows the same stability
ological parameter time courses for a selected slice as well as the task
ots the MR time courses for a selected (4 3 4) region of voxels. I–N show
rence parameters to the variability in the MR time course for each voxel.
ortions of each slice. All six regression maps are plotted using the same
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101REAL-TIME fMRI PARADIGM CONTROL AND ANALYSIS
ith data acquisition, and therefore to be considered
ssentially real-time, it necessarily involved some de-
ay between the time of each MRI acquisition and the
ime that data appeared in the displayed results. This
elay arose because of delays in the scanner’s writing
ata to its disk files, delays in transferring data across
he network, and the time required for fScan to process
he data. The net result of these delays was measured
or our hardware configuration to determine the overall
atency involved in getting the data to fScan’s display
Table 2). Once again time measurements were made
or the three matrix sizes and acquisition modes tested
n Table 1, but in this case only the SGI Power
hallenge computer system was used and tested to
etermine the minimum number of parallel CPU’s
eeded to achieve real-time performance.
As seen on the bottom line of Table 2, the fMRI

nalyses of the small, medium, and large matrix sizes
ested were completed within 10 s of the end of scan-
ing using one, two, and three CPU’s in parallel,
espectively. The analysis in each case involved image
econstruction with ghost tuning, image stability and
otion estimation, T-test statistical mapping, visual

ata display, and storing of the reconstructed images to
isk files. The program updated the plots of image
tability after every eight images and the T-map dis-

FIG. 5. Combining functional and structural data. Functional
ctivated voxels are superimposed over a high resolution 3-D set of
onventional MR images. The data set is from a visual mapping study
imilar to that shown in Figs. 3 and 4. The phase map voxels are
lotted over coronal, sagital, and axial spoiled GRASS (SPGR) views
o show visuotopy in the visual cortex. SPGR scan parameters: 3-D
RASS, TR 5 25 ms, TE 5 4 ms, FOV 5 24 3 18 cm, matrix 5 256 3
92, voxel size 5 0.94 3 0.94 3 1.5 mm, total scan time 5 460 s.
lay after every task block. There were longer and more n
ariable delays at the beginning of each scan, primarily
ecause the scanner tended to collect several acquisi-
ions before writing them all together to disk files. As a
esult fScan typically had to wait for several acquisi-
ions and then process the data in bursts. At the end of
he scan the last acquisition was written to the scan-
er’s disks as soon as the acquisition terminated and
losed its output files, so that fScan runs that were fast
nough to keep up almost always completed all data
rocessing within 10 s of the last MR acquisition.
The processing performance for the voxel time course

spects of fScan’s second-pass analysis were quantified
sing the same 3 MR matrix sizes and computer
latforms as tested for Table 1. In this case the process-
ng started after scanning had completed and the data
either raw k-space or MR images) were read from local
isk files. Table 3 shows mean execution times for the
ost common second pass operations. The results

emonstrate that these postprocessing steps can all be
ccomplished on-line within just a few minutes after
ompletion of an fMRI scan.

DISCUSSION

This study demonstrates a comprehensive, flexible
oftware environment for completely automated real-
ime fMRI paradigm control and immediate on-line
nalysis. The paradigm software is based on the CIGAL
rogramming language (Voyvodic 1986, 1996; Purves
nd Voyvodic, 1997) and features a real-time processor
ith submillisecond accuracy and the ability to process
any different streams of operations in parallel. This

aradigm software allows a standard personal com-
uter to simultaneously present audio and/or video
timuli, record behavioral and physiological responses,
nd ensure accurate synchronization between the para-
igm and MR image acquisition. The analysis software
fScan) is based on a hierarchical approach that com-
ines initial fMRI results in essentially real-time (with
few seconds latency) with more comprehensive statis-

ical postprocessing. The real-time processing is ca-
able of data acquisition, image reconstruction, head
otion measurements, translational image registra-

ion, t test activation maps, and single trial time plots.
he postprocessing analysis is completed within a
inute or two after the end of each scan; it incorporates

ehavioral and physiological time course data and
erforms time domain analyses to filter out spike noise,
ignal drifts, cardiac and respiratory oscillations, and
o generate correlation and phase maps and multiple
egression maps.
CIGAL and fScan demonstrate that fMRI software

an combine the flexibility to accommodate a wide
ange of imaging paradigms, with fast and efficient
n-line data processing and essentially turn-key opera-
ion. In our facility these two programs have made
eal-time image analysis a routine part of fMRI scan-

ing. Thus, a single MR operator can control the
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102 JAMES T. VOYVODIC
canner and paradigm software for most functional
tudies to generate image stability plots and task-
ependent t test maps of brain activation that are
isplayed and progressively updated during the scan
tself. For most applications, new paradigms can be

FIG. 6. fScan regression filtering. Regression maps for a languag
as performed to reduce MR signal variability associated with time

ate. The top row panels (images) show the first image for each slice.
elative intensity scale. The bottom row (t maps) shows the t test activ
mplemented in CIGAL and analyzed with fScan using c
nly menu based interactions to specify data and
iming parameters, without the need for any additional
rogramming. Although this report emphasizes using
he two programs together as a complete on-line fMRI
ackage, they are each self-contained C programs and

tudy are shown before and after fScan regression filtering. Filtering
ifts), cardiac phase, respiratory phase, cardiac rate, and respiratory
e middle six rows show the regression maps, all plotted at the same
on maps (t . 5 3.5) for the sentence reading task.
e s
(dr
Th
an also be used independent of each other. Both
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103REAL-TIME fMRI PARADIGM CONTROL AND ANALYSIS
TABLE 1

Real-Time Performance

atrix size 128 3 64 256 3 128 512 3 128
lipped image size 64 3 64 128 3 128 256 3 256
oxel size (mm 3 mm 3 3 mm
slices) 3.1 3 3.1 1.6 3 1.6 0.8 3 0.8
cquisition mode 1-shot, Full K 1-shot, Partial K 2-shot mosaic, Partial K
aw data size (per image) 32 Kb 88 Kb 176 Kb

mage data size (per image) 8 Kb 32 Kb 128 Kb
ax. acquisition duty cycle
(per image) 214 ms 500 ms 1000 ms

NMR image reconstruction
(per image) 252 ms 2500 ms 7442 ms
etwork raw data transfer
(per image) 34 ms 105 ms 210 ms
etwork image data transfer
(per image) 14 ms 75 ms 298 ms

omputer SGI-O2 SGI-PC Sun Ultra SGI-O2 SGI-PC SGI-PC SGI-O2 SGI-PC SGI-PC
umber of CPUs 1 1 1 1 1 6 1 1 6

Scan processing times
(ms/image)
Image reconstruction 49.2 6 .8 47.2 6 0 97.1 6 .1 323.3 6 .5 382.0 6 2.0 75.6 6 .2 1518 6 2 1653 6 1 324.6 6 4.6
Image motion calculation 1.4 6 .0 0.8 6 0 1.8 6 0 5.5 6 .0 3.3 6 .1 5.4 6 .4 30.6 6 .2 11.7 6 0 16.0 6 .4
Image registration* 41.4 6 .2 44.7 6 .1 104.9 6 .3 319.6 6 1.8 375.6 6 4.0 67.4 6 .3 1485 6 29 1715 6 4.4 325.4 6 20
Image data disk write 0.7 6 0 0.5 6 0 1.8 6 0 1.7 6 0 1.0 6 0 1.0 6 0 3.3 6 0 2.1 6 0 2.1 6 0
Spatial smoothing 7.1 6 .0 4.6 6 0 13.5 6 0 29.9 6 .0 20.0 6 0 21.7 6 0 27.7 6 .2 82.3 6 0 51.0 6 9.2
T test calculation 1.7 6 .0 0.8 6 0 2.0 6 0 7.1 6 .0 3.2 6 0 5.4 6 0 42.1 6 .2 14.6 6 0 20.0 6 0

tandard processing—
image data 277 273 285 2620 2604 2610 7842 7851 7829

tandard processing—raw data
(* not in ‘‘standard’’ analysis) 95 88 150 473 515 214 1832 1973 624

Note. Processing times, in milliseconds per image, for three different size echo-planar gradient echo acquisition matrices processed during
ata acquisition. Matrix sizes ranged from the simplest 128 3 64 matrix to 512 3 128 2-shot mosaic ‘‘catch and hold’’ acquisitions with partial
-space in the phase direction. Times were compared for three different computer systems: SGI O2, SGI Power Challenge (SGI-PC) using
ither 1 CPU or 6 CPU’s in parallel, and Sun Ultra 2 using 1 CPU. The bold line near the top shows the scanner’s maximum data acquisition
ate per image for each matrix size. The bold line at the bottom shows fScan’s mean processing time per image when starting with raw data
rom the scanner. ‘‘Standard’’ processing included network data transfer, motion calculation, spatial smoothing, and t test, plus image
econstruction on either the scanner or using fScan. Each time represents the mean of three successive runs.
TABLE 2

Real-Time Latency

atrix size 128 3 64 256 3 128 512 3 128
mage size 64 3 64 128 3 128 256 3 256
cquisition mode 1-shot, Full K 1-shot, Partial K 2-shot mosaic, Partial K
umber of images acquired in 480-s scan 2240 960 480
cquisition rate per image (max duty cycle) 214 ms 500 ms 1000 ms

omputer SGI-PC SGI-PC SGI-PC SGI-PC SGI-PC
um CPUs 1 1 2 1 3
otal scan time 480.0 480.0 480.0 480.0 480.0
otal analysis time 490.3 6 5.9 570.4 6 17.7 487.5 6 4.8 968.0 6 27.4 489.0 6 3.6
elay from 8th MR image to stability plot display 8.0 6 3.5 12.3 6 5.1 17.2 6 0.5 37.7 6 2.5 8.0 6 1.7
elay from end of 1st cycle to T-map display 36.3 6 5.1 51.6 6 9.2 7.0 6 4.8 103.3 6 7.0 30.7 6 1.5
elay from end of scan to end of analysis 10.3 6 5.9 90.4 6 17.7 7.5 6 4.8 488.0 6 27.4 9.0 6 3.6

Note. Delay times, in seconds, between the moment at which different stages of EPI data were acquired on the scanner and when that data
ppeared within fScan’s displayed results. The same data acquisition sizes as in Table 1 were tested, and in this case all processing was
erformed on the SGI Power Challenge computer. For each data set, processing involved transferring raw data from the scanner,
econstructing images, storing images on disk, spatial smoothing, image stability calculations, t test calculations, and displaying the data.
imes for each matrix size are given using a single CPU and, where necessary, with the minimum number of CPU’s running in parallel to keep
p with data acquisition. The bold times at the bottom indicate those scans in which the complete analysis was completed within 10 s of the
nd of the scan. Each time represents the mean of three runs.
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104 JAMES T. VOYVODIC
IGAL and/or fScan are available to interested users
rom the author.

A significant feature of this fMRI software is that it
chieves real-time fMRI performance without the need
or highly specialized hardware. CIGAL, for example,
uns on either Macintosh or IBM compatible personal
omputers and has no scanner-specific features. Its
nalog and digital data input features are straightfor-
ard and could be accommodated by a variety of
ifferent peripheral data acquisition interfaces. fScan
uns on Unix systems that support X-windows. It
ontains four scanner-dependent routines: one that
eads the MR header information, two that read the
R data (one for raw and one for image data), and one

hat performs image reconstruction if using the raw
ata. Although these routines are clearly important for
chieving real-time performance, they can be readily
odified for other pulse sequences or different hard-
are or omitted altogether for analyses performed

ff-line.
Sufficient computing power for achieving the results

hown in this study was obtained from standard com-

TAB

Near Real-Tim

atrix size 128 3 64
mage size 64 3 64
mage voxel size

(mm 3 mm 3 mm)
3.1 3 3.1 3 3.0

cquisition mode 1-shot, full k

omputer SGI-O2 SGI-PC Sun Ultra SGI
umber of CPUs 1 1 1 1
ead image data
from disk

1.7 6 .2 0.7 6 .3 1.3 6 0 3.9 6

ilters:
Detrend 11.7 6 .0 11.8 6 .1 13.6 6 0 51.8 6
Regression filter—

1 variable
9.4 6 .0 9.3 6 .2 9.1 6 0 44.5 6

Regression filter—
3 variables

12.3 6 .0 10.9 6 0 13.9 6 0 56.7 6

aps:
Correlation 5.7 6 .0 5.5 6 0 8.1 6 0 27.9 6
Cross-correlation 39.7 6 .0 30.8 6 .1 110.3 6 0 159.0 6
Regression map—

1 variable
9.8 6 0 8.9 6 0 10.3 6 0 44.7 6

Regression map—
3 variables

13.7 6 .5 11.7 6 .1 16.6 6 0 58.8 6

ead raw data from
disk

9.9 6 .4 10.0 6 .2 3.9 6 .1 14.6 6

aw Filters:
Detrend 85.8 6 .2 70.0 6 .9 114.4 6 1.1 188.8 6
Regression filter—

1 variable
75.1 6 .1 58.6 6 .6 86.7 6 .2 162.2 6

Regression filter—
3 variables

80.8 6 .3 62.1 6 .2 96.6 6 .3 179.3 6

Note. Times for fScan processing of MR time course data one voxel a
atrix sizes and computers were compared as in Table 1. All times a

mage, in ms. Each time represents the mean of three successive runs
ercially available computers. By manipulating the
isplay using fast video lookup table changes, asynchro-
ous file I/O, and efficient image transfer operations,
IGAL’s parallel processor could routinely achieve
mooth continuous video animation and behavioral or
hysiological response monitoring on a standard per-
onal computer using only a fraction of the CPU’s time.
lthough our SGI Power Challenge computer with
ight parallel CPU’s could achieve faster fScan process-
ng times than most standard workstations, the results
emonstrate that even for the largest matrices only two
r three parallel CPUs were actually needed to obtain
eal-time performance on our GE scanner (see Table 2).
any moderately priced workstations offer such paral-

el processing. Alternatively, the analysis could be
xplicitly split among separate workstations. Rapid
ransfer of the MR data to the analysis computer was
lso an important performance requirement and was
atisfied in this study using CDDI network interface
ardware. Transfer of the paradigm data and command
les from the paradigm computer to the analysis
omputer was less time-critical and was achieved using
lower 10BaseT Ethernet network connections.

3

Performance

256 3 128 512 3 128
128 3 128 256 3 256

1.6 3 1.6 3 3.0 0.8 3 0.8 3 3.0

1-shot, partial k 2-shot, partial k

SGI-PC SGI-PC SGI-O2 SGI-PC SGI-PC
1 6 1 1 6

1.6 6 .2 2.1 6 1.3 14.3 6 .4 4.5 6 .4 5.2 6 .2

60.9 6 .4 20.4 6 .2 230.4 6 .4 243.1 6 0 68.3 6 1.4
52.0 6 .3 18.9 6 .1 203.1 6 1.0 204.5 6 0 60.4 6 .6

57.2 6 .3 19.9 6 .2 248.5 6 .4 233.7 6 .2 66.8 6 .4

27.8 6 .6 14.1 6 .1 120.6 6 .2 102.2 6 .8 39.5 6 .4
126.4 6 .4 24.0 6 0 652 6 .2 500.2 6 1.4 137.7 6 .8
49.0 6 0 11.5 6 .1 189.4 6 1.0 199.8 6 .7 45.2 6 .3

56.4 6 .3 12.7 6 .3 251.6 6 1.9 232.7 6 1.7 52.6 6 .7

18.2 6 .6 17.0 6 1.1 37.7 6 .2 34.5 6 2.3 33.5 6 1.6

186.5 6 3.0 57.0 6 1.3 396.4 6 .4 372.0 6 1.2 139.9 6 13
156.6 6 .8 54.2 6 .3 335.4 6 1.6 313.3 6 .6 111.4 6 .4

162.2 6 1.4 68.4 6 4.7 376.6 6 .8 329.9 6 1.0 132.5 6 11

time, starting after the completion of MR data acquisition. The same
ormalized to the number of images and expressed as mean time per
LE
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ariables into the on-line analysis is another important
spect of this approach. As both cardiac and respiratory
scillations produce periodic changes in blood oxygen-
tion, local tissue motion, and perhaps gross motion-
nduced susceptibility artifacts they can give rise to
ignificant variations in the size of the MR signal
Jezzard et al., 1993; Weisskoff et al., 1993; Hu et al.,
995; Le and Hu, 1996; Noll and Schneider, 1994). The
resent study demonstrates that cardiac and respira-
ory signals can be trivially and routinely recorded for
ny fMRI paradigm without needing any extra soft-
are or hardware setup. Moreover, these data can be

ncorporated into the statistical image analysis within
inutes of the completion of each scan.
Although the current study does not represent the

tate of the art in terms of instantaneous real-time
erformance in MR image analysis, it does represent
n important step toward making real-time fMRI truly
ractical. Cox et al. (1995), for example, have demon-
trated better real-time performance by taking the MR
ata directly from the scanner’s backplane or RAM
emory, thus avoiding FScan’s few second delays in

eading MR data from the scanner via disk files.
imilarly, others (Woods et al., 1992; Friston et al.,
996; Eddy et al., 1996) have developed better image
egistration software than the simple alignment offered
y fScan. For most applications, however, a few seconds
atency between each MR acquisition and the updated
nalysis display is probably not a significant problem
nd scans that are seen to have significant head motion
n the on-line analysis can still be aligned by a more
omplete three-dimensional registration in postprocess-
ng. The emphasis in the current work has not necessar-
ly been to provide the technically most advanced real
ime features, but to address ways that can make fMRI

more reliable and effective technique. The goal has
hus been to design paradigm software that provides
ery good real-time control and data monitoring so that
ne has optimal information about what the subject
oes within the scanner, along with analysis software
hat is capable of displaying the results and identifying
otential problems fast enough to improve reliability by
horoughly evaluating each scan in very close to real-
ime.

Improving reliability is clearly an important consider-
tion for fMRI, especially in a clinical setting in which
uccessful results must be obtained for virtually every
atient if fMRI is to be a useful procedure for diagnosis
r treatment. Anxious patients cannot be expected to
erform unfamiliar tasks correctly for every scan.
atients can also not reasonably be kept in the scanner
ntil an off-line analysis has been completed, nor would

t be practical to bring them back for repeat scans if
ubsequent data processing indicated a problem. To

nsure a usable result, therefore, patient performance
ust be carefully monitored during each scan and the
R images must be analyzed on-line so that unsuccess-

ul scans can be repeated immediately if necessary.
apid data processing is also important in order to
nsure that the functional activation maps are avail-
ble in time to contribute significantly to patient care
ecisions.
Comprehensive real-time analysis is also useful for

chieving maximum sensitivity in research applica-
ions involving high spatial or temporal resolution
tudies. Preliminary low resolution scans analyzed
mmediately can be used to localize functional areas
nd allow accurate slice prescription for subsequent
ore detailed scans. In addition, improving sensitivity

hrough physiological noise filtering and on-line detec-
ion of major noise problems is likely to be even more
mportant for higher resolution studies that have intrin-
ically lower signal to noise ratios, and therefore greater
oise susceptibility. Real-time data processing can also
e used to improve scanning efficiency by allowing long
cans to be prescribed and then terminated interac-
ively as soon as the analysis indicates a statistically
ignificant result.
Overall, these results demonstrate that fMRI analy-

is quality does not need to be compromised for process-
ng speed. By using efficient software and taking advan-
age of the speed of current computer processors and
etwork technology, functional imaging studies can
ccurately control and monitor a wide range of impor-
ant physiological and behavioral variables and provide
mmediate comprehensive statistical analysis of brain
ctivation. Ongoing improvements to the processing
lgorithms as well as the availability of ever faster
omputer hardware should ensure that both the speed
nd quality of such real-time methods will continue to
mprove. Such advances should help to significantly
mprove the reliability of fMRI for both research and
linical applications.
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